NOT A CHIMP

NOT A CHIMP
Click on the cover to link to OUP's e-catalogue then turn to the biology section.

Interview Podcast with George Miller

Interview Podcast with George Miller
Click on the pic to link to the NOT A CHIMP podcast on Blackwell's Website

Preface to "Not A Chimp: The Hunt For The Genes That Make Us Human"

In many ways, this book is born out of frustration for a professional career in popular science television where ideas about comparative primate cognition, and the similarities and differences between us and our primate relatives, have continually circled me but constantly evaded my grasp in terms of the opportunity to transform them into science documentary. On the plus side, keeping a watching brief for over a quarter of a century on subjects like comparative animal cognition and evolution allows you to watch a great deal of water flow under the bridge. Fashions come and fashions go - specifically, perspectives on the similarity - or otherwise - of human and ape minds.

I remember the first Horizon science documentary about the chimpanzee Washoe, the great ape communicator, using American Sign Language to bridge the species barrier. And, later, Kanzi the bonobo jabbing his lexicon. These were the apes, as Sue Savage-Rumbaugh has put it, that were "on the brink of the human mind".

I remember when the pre-print of Machiavellian Intelligence, by Andrew Whiten and Dick Byrne, plopped onto the doormat of the BBC Antenna science series office in 1988. Suddenly primatology had become a great deal more exciting. Could primates, and especially higher primates like chimpanzees, really be as full of guile, as dastardly, as cunning, and as manipulative as the eponymous Florentine politician? Could they really reach deep into the minds of other individuals to see what they believed and what they wanted, and turn that information into deception?

I remember discussing primate cognition with a young Danny Povinelli, as we sat finger-feeding ourselves shrimp gumbo and new potatoes out of plastic Tupperware containers in a Lafayette restaurant surrounded by an alligator-infested moat, before returning to his kingdom - the New Iberia Research Centre - where the University of Louisiana had lured him back to his native deep South by turning a chimpanzee breeding centre for medical laboratory fodder into a primate cognition laboratory with one of the largest groups of captive chimpanzees in the country. He looked like a kid who had just been thrown the keys to the tuck shop.

In those days Povinelli shared the zeitgeist - spread by Whiten's and Byrne's work, and started by Nick Humphrey and Alison Jolly before them - that, since the most exacting and potentially treacherous environment faced by chimpanzees and other primates was not physical, but the social environment of their peers, they had evolved a form of social cognition very much like our own, in order to deal with it. This was further elaborated into a full-blown "social brain" hypothesis by Robin Dunbar, who related brain neocortex size to social group size throughout the primates and up to man. Povinelli's early work reflects this optimism for the mental life of apes, but both ape-language and ape-cognition research was subjected to a cold douche of searching criticism during the 1990s, and misgivings set in regarding the effectiveness of the experiments that had been constructed to guage ape cognition. Now the worm has turned again, with a number of research groups emerging with bolder and bolder claims for the Machiavellian machinations of primate minds, only to be powerfully countered by the curmudgeonly skepticism, chiefly by Povinelli, that these researchers are merely projecting their mental life onto that of their subjects; that, rather in the frustrating manner of Zeno's arrow that could never quite reach its target because it continually halved its distance to it, no experiment constructed thus far can actually get inside the mind of a chimp and show us exactly what it does and doesn't know, or how much, about the minds of others or the way the physical world works. One influential part of the world of comparative animal cognition talks of a continuum between ape and human minds and shrinks the cognitive distance between us and chimps to almost negligible proportions, while another returns us to the unfashionable idea that human cognition is unique, among the primates, after all.

When I began writing this book the working title was "The 1.6% that makes us human". My aim had always been to scrutinize the impression put about in the popular science media that humans and chimps differ by a mere 1.6% in our genetic code - or even less - and that it therefore makes complete sense that this minuscule genetic difference translates into equally small differences in cognition and behaviour between apes and man. However, contemporary genome science and technology, over the last few years, have dramatically advanced the power and resolution with which scientists can investigate genomes, eclipsing the earlier days of genomic investigation that gave rise to the "1.6% mantra".

As with comparative cognitive studies, conclusions on chimp-human similarity and difference in genome research depend crucially on perspective. To look at the complete set of human chromosomes, side by side with chimpanzee chromosomes, at the level of resolution of a powerful light microscope, for instance, is to be overwhelmed by the similarity between them. Overwhelmed with a sense of how close our kinship is with the other great apes. True, our chromosome 2 is a combination of two chimp chromosomes - giving humans a complement of 23 chromosome pairs to 24 in chimps, gorillas and orang-utans - but even here you can see exactly where the two chimp chromosomes have fused to produce one. The banding patterns you visualize by staining the chromosomes match up with astonishing similarity - and that banding similarity extends to many of the other chromosomes in the two genomes. However, look at a recent map of the chromosomes of chimps and humans, aligned side by side, produced by researchers who have mapped all inversions - end-on-end flips of large chunks of DNA - and the chromosomes are all but blotted out by a blizzard of red lines denoting inverted sequence. Now you become overwhelmed by how much structural change has occurred between the two genomes in just 6 million years. True, not all inversions result in changes in the working of genes - but many do - and inversions might even have been responsible for the initial divergence of chimp ancestor from human ancestor.

The extent to which you estimate the difference between chimp and human genomes depends entirely on where you look and how deeply. Modern genomics technology has led us deep into the mine that is the genome and has uncovered an extraordinary range of genetic mechanisms, many of which have one thing in common. They operate to promote variability - they amplify differences between individuals in one species. We now know, for instance, that each human is less genetically identical to anyone else than we thought only three years ago. When we compare human genomes to chimpanzee genomes these mechanisms magnify genetic distance still further. I have tried, in this book, to follow in the footsteps of these genome scientists as they dig deeper and deeper into the "Aladdin's Cave" of the genome. At times the going gets difficult. Scientists, like any explorers, are prone to taking wrong turnings, getting trapped in thickets, and covering hard ground, before breaking through into new insights. I hope that those of you who recoil from genetics with all the visceral horror with which many regard the sport of pot-holing will steel yourselves and follow me as far as I have dared to go into Aladdin's Cave. For only then will you see the riches within and begin to appreciate, as I have, just how limited popular accounts of human-chimpanzee genetic difference really are. Let me try and persuade you that this is a journey, if a little arduous at times, that is well worth taking.

There are a number of scientists around the world who have the breadth and the vision to have begun the task of rolling genetics, comparative animal cognition, and neuroscience into a comprehensive new approach to the study of human nature and this is part, at least, of their story. They strive to describe the nature of humans in terms of the extent to which we are genuinely different to chimpanzees and the other great apes. Somehow, over 6 million years, we humans evolved from something that probably resembled a chimpanzee (though we cannot yet be entirely sure) and the answer to our evolution has to lie in a growing number of structural changes in our genome, versus that of the chimpanzee, that have led to the evolution of a large number of genes that have, effectively, re-designed our brains and led to our advanced and peculiar human cognition.

If you don't believe me, hand this book to your nearest friendly chimpanzee and see what he makes of it!

Friday 2 October 2009

Ardipithecus Forces Re-examination Of Human Origins

The entire special edition of SCIENCE, mainly devoted to papers detailed the extraordinary find of a female Ardipithecus ramidus - dated 4.4 million years old - in Ethiopia has been made free to view by the AAAS. This is an astonishing find with multiple repercussions for the way we view our evolutionary relationship with the rest of the great apes and the extent to which we tend to use them - especially the chimpanzee - as some evolutionary template for the last common ancestor 6 million years ago, and aspects of our own cognition.

I have cautioned several times in NOT A CHIMP that it makes no sense to see - as Frans de Waal does - both the chimpanzee and bonobo as some kind of template for our own behaviour. My feeling has always been that it is dangerous to assume that either of these apes can tell us very much about what the last common ancestor looked like, nor how it behaved. Chimps have been evolving since that split 6 million years ago, its just that we know so very little about the details of their evolutionary trajectory since then, compared with the little we know about hominid evolution.

Ardipithecus was about 4 foot tall and had a brain about the same size as a modern chimp. But it walked upright while retaining a powerful, grasping big toe - so it is clear that it lived in woodland as opposed to open savanna, and climbed trees as well as walking on the ground. Of huge interest is its dentition and the likely fact that there is very little sexual dimorphism between male and female. The projecting canines so typical of many other primate species are already very much reduced and this, together with the fact that males are only slightly bigger than females (like us), suggests that sexual competition was very much reduced. The commentary paper by anthropologist C. Owen Lovejoy spells this all out: "One effect of chimpanzee-centric models of human evolution has been a tendency to view Australopithecus as a transitional between an ape-like ancestor and early Homo. Ardipithecus ramidus nullifies these presumptions, as it shows that the anatomy of living apes is not primitive but instead has evolved specifically within extant ape lineages. The anatomy and behaviour of early hominids are therefore unlikely to represent simple amplifications of those shared with modern apes. Instead, A. ramidus preserves some of the ancestral characteristics of the last common ancestor with much greater fidelity than do living African apes. Two obvious exceptions are its ability to walk upright and the absence of the large projecting canine tooth in males, derived features that Ardipithecus shares with all later hominids.....Loss of the projecting canine raises other vexing questions because this tooth is so fundamental to reproductive success in higher primates. What could cause males to forfeit their ability to aggressively compete with other males? What changes paved the way for the later emergence of the energy-thirsty brain of Homo? Such questions can no longer be addressed by simply comparing humans to extant apes, because no ape exhibits an even remotely similar evolutionary trajectory to that revealed by Ardipithecus."

Lovejoy posits a major shift in life-history strategy that has transformed the social structure of early hominids, reducing male-to-male conflict, and combining three previously unseen behaviours associated with their ability to exploit both trees and the land surface: regular food carrying, pair-bonding and hiding of the outward signs of female ovulation. He concludes: "Together, these behaviours would have substantially intensified male parental investment - a breakthrough adaptation with anatomical, behavioural and physiological consequences for early hominids and for all of their descendents, including ourselves".

Nothing that has happened in the field of human origins equals this find as a cautionary tale for those who would go beyond using the chimpanzee as a valuable tool for charting our origins - by virtue of it being our nearest living relative in terms of DNA - to making dangerous assumptions about how chimpanzees directly inform our own evolution and can be used as a template for it. As I have said all along - we need to keep chimps more at arms' length!

Wednesday 30 September 2009

Madness, Creativity And Human Brain Evolution

The putative link between mania and creativity refuses to go away. In the final chapter of NOT A CHIMP I describe how many of the genes implicated at one time or another in schizophrenia, appear to have been positively selected both in the primate lineages and, uniquely, in the human lineage. All these positively selected genes are active in the brain where they seem responsible for synapse development, and the many energy producing processes that fuel the brain's activity. The implication is that the human brain is now running at optimum and that anything that throws a spanner into its metabolic works could produce the effects we diagnose as mental illness.

Szabolcs Keri, from Semmelweis University in Hungary has concentrated on just one of these genes that, on the one hand, develops and strengthens the communication between neurons, and, on the other, can predispose to schizophrenia - neuregulin 1. He has shown that volunteers with a certain variant of this gene perform particularly well on tests for intelligence and creativity, while, as we know, another variant of the gene is a prime schizophrenia suspect. He observes, "molecular factors that are loosely associated with severe mental disorders but are present in healthy people may have an advantage enabling us to think more creatively". The article concludes: "In addition, these findings suggest that certain genetic variations, even though associated with adverse health problems, may survive evolutionary selection and remain in a population's gene pool if they also have beneficial effects".

Spotted Hyenas Cooperate Better Than Chimps

Some fascinating research by a comparative psychologist, Christine Drea, from Duke University, who has had trouble getting this sort of stuff published in the past because it was outside the mainstream of comparative cognitive psychological research. She has shown that spotted hyenas out-perform chimps on tasks that require them to learn how to cooperate by pulling synchronously on two ropes to release a food reward from the palette they are tied to. Chimps are notoriously bad at these cooperative tasks and require extensive and long-winded teaching, but the hyenas figured out how to do it very quickly and under their own steam. When a naive animal was paired with an experienced socially dominant animal the latter would temporarily suspend dominant behaviour and submissively follow the lower-ranking animal, only to re-assert itself once the task was ended. The only pairing that performed poorly were two highly dominant animals. The tasks were performed in silence but there was a lot of mutual gaze-following going on.

So here we have a species evolutionarily remote from chimps out-performing them in very much the same way, on a very similar task, that bonobos - very closely related to chimps - do. It is yet more evidence that advanced social cognition is not strictly reflective of genetic proximity but social structure. As the article says, "Researchers have focused on primates for decades on the assumption that higher cognitive functioning in larger-brained animals should enable organized team-work. But Drea's study demonstrates that social carnivores, including dogs, may be very good at cooperative problem-solving even though their brains are comparatively smaller. "I'm not saying", says Drea, "that spotted hyenas are smarter than chimps just that they are more hard-wired for social cooperation". What I say is that cognition is taxonomically blind. It is an adaptive tool to do an adaptive job and here it arises out of social structure.